
Mitacs Industrial Math Summer School

Maple Graph Theory Package

Final Report

Nikolas Karalis
Raul Aliaga

Andrew Arnold
Wenqian Wu

August 24, 2007

1

1 Introduction

The four of us were given the project of improving the Graph Theory Package
for Maple 12. There were graduate students who had been working on this
for a while. From them, we have understood the problems to be solved. At
the same time, each of us was guided to start working on the following four
specific problems during the month-long stay at CECM.

• Graph Isomorphism

• Graph Colouring

• Fullerenes

• Planar Drawing

Although there had been many collaborations between some of us and with
the graduate students, our work remained relatively independent. Halfway
through the project, each of us has essentially picked one topic from the
four to focus on. We have Nikolas working on Graph Isomorphism, Raul
on Graph Colouring, Andrew on Fullerenes and Wendy on Planar Drawing.
Therefore at the end, we figured it was more appropriate for each of us to
prepare an individual subreport. This final report is the product of the four
subreports put together. Thus don’t be too suprised when you notice a
sudden change of writing style from one section to another. In a way, we
are presenting our project and working experience from four perspectives.

2

Contents

1 Introduction 2

2 Graph Isomorphism 4
2.1 Introduction . 4
2.2 Theory and Problem Description 4
2.3 Experiments . 4
2.4 Results . 8

3 Graph Colouring 10
3.1 Introduction . 10
3.2 Binary linear programming formulation 10
3.3 Alternative degree definitions 11
3.4 Results . 12

4 Fullerenes 16
4.1 Introduction . 16
4.2 The spiral code algorithm . 17
4.3 Constructing fullerenes from simpler graphs 18

5 Planar Drawing 21
5.1 Introduction . 21
5.2 RubberDraw . 21
5.3 Experiments and Observations 22
5.4 A improvement to RubberDraw 24
5.5 Future Work . 26

6 Bibliography 27

3

2 Graph Isomorphism

2.1 Introduction

During the past month, I worked at the CECM (Centre for Experimental
and Constructive Mathematics) on the improvement of the Graph Theory
package for the MAPLE software package. I tried a few different things (like
implementing a Depth-first search and Breadth-first search algorithm, as far
as an algorithm solving the Knight’s tour problem), before ending up to the
Graph Isomorphism problem, on which I worked till the end of the Summer
School.

2.2 Theory and Problem Description

In graph theory, a graph isomorphism is a bijection (a one-to-one and onto
mapping) between the vertices of two graphs G and H f : V (G) → V (H)
with the property that any two vertices u and v from G are adjacent if and
only if f(u) and f(v) are adjacent in H.
The graph isomorphism problem is whether two graphs are isomorphic (there
exists a graph isomorphism between them) or not.
This problem is characterized as NP, but it is not know yet if it belongs in
the polynomial time or the NP-complete class.
What we wanted for Maple, is to have a fast function of determining whether
the 2 graphs are isomorphic or not and if they are not, to know which is
their isomorphism.
Before proceeding with my experiments and results, it is useful to include
some definitions.
The Adjacency Matrix of a finite directed or undirected graph G on n
vertices is the n x n matrix where Aij is the number of edges from vertex i
to vertex j. In the cases we are interested, the graphs have no loops, so all
the Aii are 0.
The Degree of a vertex is the number of edges incident to the vertex.
The Degree Matrix is a diagonal matrix, where the entry Di,i is the degree
of the vertex i.
The Laplacian Matrix is given by D-A and the Absolute Laplacian
Matrix is given by D+A.

2.3 Experiments

For all the following, we suppose to have two graphs G and H, and try to find
an isomorphism between these two. The first steps towards the isomorphic
test, consist of implementing the backtracking algorithm, which is slow, but
it is sure that if there exists an isomorphism, it will be found. For doing
that, we need to have a partition of the possible vertices of graph H that

4

correspond to each of the vertices of the graph G. We do that based on the
degree of each vertex.
So, i implemented the partition method based on the degree of each vertex,
which is used as an input to the backtracking method that Wendy imple-
mented. You can see the results of the partition method in Table 1.
In order to check all the other algorithms, we needed to have a big list of
graphs, so i wrote an algorithm for creating all the graphs (with respect to
the degree sequence) of a given number of vertices.
One trivial and fast, but really usefull isomorphism test, that is the base
for almost every other test, is the Degree Sequence of a graph. So, in our
method, we included the check for the sorted degree sequence of the graphs.
After doing these, i had to find a way to make the test faster. In order to
do that, i began experimenting with different graph invariants.
You can see a comparison of these in the next tables.
One of the most common graph invariant, is the eigenvalues of the Adjacency
Matrix of a graph. However, this is not a very good invariant, since many
non isomorphic graphs have the same eigenvalues.
A better method, is the eigenvalues of the Laplacian Matrix of a graph
(furthemore, the second smallest eigenvalue is the algebraic connectivity of
the graph). Another better matrix to use is the Absolute Laplacian Matrix.
When saying better, we mean that less graphs have the same eigenvalues.
Since we need to do all these computations fast, instead of computing the
eigenvalues of these matrices, we use the power of modular arithmetic and
we compute the characteristic polynomial of the matrices mod p, where p is
a very big (random) prime number.
All the previous can be found in published papers on the topic.
The following is a result that i came up with, and it is not yet published (as
far as i know).
We define a new matrix D’, which is a diagonal matrix, where the entry D′

i,i

is the square of the degree of the vertex i.

D′
i,i = deg2(i)

We then define the matrix E = D’ + A , where A is the Adjacency Matrix
of the graph.
This matrix is a much better graph invariant, since it is a perfect isomor-
phism test for graphs up to 9 vertices, and there is only at 10 vertices and
14 edges where this test shows it’s weaknesses.
There are only 4 pairs of graphs, that falsely pass this test at 10 vertices
and 14 edges. So the next step was to find a new matrix, that works for
these 8 graphs. After many experiments, i found a new matrix, that works
for 6 of these graphs. The new matrix is defined as :

M = L • L′ , L = A + D , L′ = 2A + D

5

Figure 1: 10 Vertices - 14 Edges

We can also define the matrix as :

M = L • L′ , L = A + D′ , L′ = 2A + D′

but this doesn’t improve the results, at least in the range of my test.
However, the fact that these tests are graph invariants remains to be proven.
I have run extended tests which all show that these tests are probably graph
invariants, but i haven’t proved it.
The only remaining pair of graphs that has the same characteristic polyno-
mial for this matrix, is displayed in Figure 1.
While trying to find the properties of these two graphs, I found that the M
matrices, as defined above, for these 2 graphs are similar.
When two matrices are similar, they have the same rank, the same de-
terminant, the same trace, the same eigenvalues, the same characteristic
polynomial and the same minimal polynomial. So we can say that these 2
graphs are similar under this test and under the M matrix.
This leads us to the following :
We either have to find a new matrix transformation that makes the M ma-
trices not similar or we have to find a test different than the characteristic
polynomial or the above mentioned matrix properties in order to distinguish
the 2 matrices.
Finally, i found a new matrix, that is graph invariant and that succesfully
distinguishes the all the matrices up to (including) 10 vertices and 16 edges.
Maybe it works for more, but i didn’t have the time to check it since it was
a last minute result.

This succesfully solves the problem i have been trying to solve, which is to
find a graph invariant with much better results all all the previous known

6

ones. It remains to be shown, up to what number of vertices this graph
invariant works.
The matrix is defined as the M matrix above, but instead of using the
Adjacency Matrix of the graph, we use the All Pairs Distance Matrix.
You can see all the results in Table 2 and Table 3. Table 3 is the analysis of
Table 2, for 10 vertices, since this was the least number of vertices for which
i could find graphs that don’t pass the matrices. In Table 2 the row for 10
vertices is not complete, since it is a big computational task to calculate all
these numbers.

7

2.4 Results

The following tables were produced using Maple.

These tables are based on the graphs that can be found in : W.H. Haemers
and E. Spence, Enumeration of cospectral graphs, European J. Combina-
torics. I have partially reproduced these results, and added the E and M
columns. Table 1 : Results from the partitioning method

N Total Partition Non Isomorphic Connected Bipartite Tree
1 1 1 1 1 1 1
2 2 2 2 1 2 1
3 8 4 4 2 3 1
4 64 16 11 6 7 2
5 1024 84 34 21 13 3
6 32768 936 156 112 35 6
7 2097152 16758 1044 853 88 11

Table 2 : Number of graphs with cospectral mates
Vertices Non Isomorphic A A+Ā L |L| E M

2 2 0 0 0 0 0 0
3 4 0 0 0 0 0 0
4 11 0 0 0 2 0 0
5 34 2 0 0 4 0 0
6 156 10 0 4 16 0 0
7 1.044 110 40 130 102 0 0
8 12.346 1.722 1.166 1.767 1.201 0 0
9 274.668 51.038 43.811 42.595 19.001 0 0

10 12.005.168 2.560.516 2.418.152 1.412.438 636.607

8

Table 3 : Graphs on 10 vertices with non-isomorphic cospectral mate
Edges Non Isomorphic A A+Ā L |L| E M M’

2 2 0 0 0 0 0 0 0
3 5 0 0 0 2 0 0 0
4 11 4 0 0 2 0 0 0
5 26 5 0 0 4 0 0 0
6 66 26 2 7 11 0 0 0
7 165 62 6 21 31 0 0 0
8 428 191 22 75 80 0 0 0
9 1.103 412 86 237 155 0 0 0

10 2.769 1.068 278 568 338 0 0 0
11 6.579 1.994 831 1.279 681 0 0 0
12 15.772 4.843 2.178 2.722 1.307 0 0 0
13 34.663 8.874 5.380 5.455 2.344 0 0 0
14 71.318 18.747 11.811 10.428 4.362 8 2 0
15 136.433 31.852 24.094 18.826 8.069 26 14 0
16 241.577 56.827 44.229 31.373 13.909 58 52 0
17 395.166 87.986 75.358 47.972 21.814 166 150
18 596.191 133.350 116.870 68.692 31.495 364 332
19 828.728 181.236 166.403 92.350 42.534 624 600
20 1.061.159 233.250 217.639 119.163 54.427 987 931
21 1.251.389 273.336 260.561 145.233 65.430 1243
22 1.358.852 294.399 283.328 161.818 72.165 1424
23 1.358.852 291.391 283.328 161.818 72.181 1424

9

3 Graph Colouring

3.1 Introduction

Graph Coloring it’s an important problem and a difficult one. In the work
developed during the MITACS summer school, an attempt to explore and
study different formulations and heuristic for this problem were pursued.
The metodology to work on this problem is to explore several heuristic
algorithm approachs in order to study the feasibility of applying them, and
the quality of their solutions, in terms of the computational costs -time and
memory- and nearness to the optimum value. This exploration is given by
the implementation of these algorithms in Maple, and several computational
test of them.
On the next sections, a revision of each of these algorithms is made.

3.2 Binary linear programming formulation

We can define an integer linear programming problem, with binary variables,
to solve the graph coloring problem. Let

• G = (V,E) a graph.

• MaxColors the maximum amount of colors to use.

• Xi,k a variable whose value is 1 if node i uses color k, 0 otherwise.

• Ai,j the Adjacency matrix of the graph G.

Then, we can formulate the following:

min
∑

k=1...MaxColor

∑
i1...|V |

Xi,kk

s.t: The ”proper coloring” condition

Ai,j(Xi,k + Xj,k) ≤ 1 ∀k = 1 . . . MaxColor ∀i, j = 1 . . . |V |

and that every vertex uses at least one color -and no more-∑
k=1...MaxColor

Xi,k = 1 ∀i = 1 . . . |V |

The objective function encourages to use the least available color, since the
color number is a cost in it. The first constrain models the coloring condition,
that no edge-sharing vertices uses the same color (if they do, the constrain
would be violated by 1). The second constrain is best viewed as a “less or
equal to one and greater or equal to one”, ensuring with it’s first part, that

10

every vertex is colored, and with the second one that every vertex uses at
most one color.
The parameter MaxColors is used to make this LP a finite one and with
a linear greedy algorithm can be obtained, since the colors given by this
approach is an upper bound for the chromatic number of a graph.

3.3 Alternative degree definitions

A greedy algorithm, can be described in general in the following manner:

1. Define a degree for every vertex.

2. Choose an uncolored vertex with highest degree value given by the
previous definition

3. Repeat until every vertex is colored.

Maple’s Graph theory package comes with an implementation of the greedy
algorithm, with the degree defined by the usual vertex degree definition. It’s
linear since the degree of each vertex is calculated linearly on the amount
of edges, and these values are the same at each stage of the computation
of the algorithm, so chosing the least available color is again linear on the
amount of edges -as an upper bound because it’s linear on the neighbours
of each vertex.
New vertex degree definitions can be given. Let:

1. C(v) the color of a vertex v, if is 0, there is no color assigned to v.

2. N(v) the set of “neighbours” of the vertex v.

then, we have:

• “Traditional” degree, defined as:

d(v) =
∑

e=uv,e∈E(G),u∈V (g)

∀v ∈ V (G)

i.e., the amount of incident vertices to a vertex v by edges in E(G).

• Color Degree (CD):

dcolor(v) =
∑

e=uv,e∈E(G),u∈V (g),C(v)6=0

∀v ∈ V (G)

i.e., the already colored vertices incident to v.

11

• Different Color Degree (CDD):

ddcolor(v) =
∑

e=uv,e∈E(G),u∈V (g),C(v)6=0,C(v)6=C(w)∀u,w∈N(v)

∀v ∈ V (G)

i.e., the amount of different colors that the already colored neighbours
of v have.

Then, we can have the same greedy algorithm, but with this degree defini-
tions, but more computational costs are involved since the degrees change
at each time a vertex is colored. So a trade-off between time and mem-
ory can be considered, depending on the particular implementation of the
algorithms.

3.4 Results

For the Binary LP problem, a test were made formulating the problem
conveniently with an “if”:

NumberOfNodesTest:=1;
EdgeProbability:=0.1;
MaxNodes:=12;
MaxProbability:=0.7;

for NumberOfNodesTest to MaxNodes do
while EdgeProbability <= MaxProbability do
G := RandomGraph(NumberOfNodesTest, EdgeProbability);
NumberOfNodes := NumberOfVertices(G);
MaxColors := GreedyColor(G)[1];
Objetivo := add(add(aaPHIaa[i,j]*j, i=1..NumberOfNodes),\
j = 1 .. MaxColors);

constraints :=
[seq(seq(aaPHIaa[e[1], kk]+aaPHIaa[e[2], kk] <= 1,\
e = Edges(G)),kk = 1 .. MaxColors), \
seq(‘+‘(seq(aaPHIaa[i, k],k = 1 .. MaxColors)) = 1,\
i = 1 .. NumberOfNodes)];

tiempo[NumberOfNodesTest, EdgeProbability] :=
time(LPSolve(Objetivo, constraints, assume = binary));

EdgeProbability := EdgeProbability+.1
end do;
EdgeProbability := .1
end do;

But, given that the amount of constrains grow exponentially on the size
of the graph, using a branch-and-bound heuristic to solve this problem (as
Maple does), produces an exponentially large solution tree, so the running
time grows exponentially as well.

12

For the degrees defined, we have implementations of the algorithms on
Maple, and them we run test on them, with a test that takes a proba-
bility parameter that runs from 0.1 to 1 and a number of vertices starting
from 2 to 100, and run ten times the algorithms to take the average of the
running times, and the difference in the amount of colors used compared to
the greedy coloring algorithm.

• Difference of colors given by greedy coloring, using the degree-sequence-
permutation of vertices:

• Difference of colors given by the already-colored-amount of vertices:

• Difference of colors by the already-colored-with-distinct-colors amount
of vertices:

13

As it can be seen, the amount of different colors grow similar for the three al-
gorithms, but sometimes the already-colored algorithm performs worse than
greedy coloring, and consuming more resources. However, the difference
grows stronger when bigger graphs are used, suggesting that the difference
may stay stable around the value 4 (or maybe growing logarithmically), and
the other coloring algorithms seem to grow stronger (even linearly). No
more intensive test were performed though, due to the limitation on the
summer school time.

• Running times for the greedy coloring algorithm:

• Running times for the degree-sequence-permutation greedy coloring:

14

• Running times for the already-colored-amount of vertices coloring:

• Running times for the already-colored-with-distinct-colors amount of
vertices:

The time grows linearly on the first cases, maybe logarithmically for the
second one, since it performs a sorting procedure first. The other coloring
algorithms are more time expensive, because both of them calculate at each
step the set of already colored vertices -or the set of visible colors- for each
vertex, then performing some searching and sorting operations at each stage
of the algorithm. An improvement can be made using some suitable data
structure, as a heap, for the values, but after performing some simple test,
no real improvement was found -in time neither less colors-.

15

Figure 2: Buckministerfullerene C60

4 Fullerenes

4.1 Introduction

Fullerenes are carbon molecules that form a hollow ellipsoid or tube. They
were first discovered in 1985 by researchers at Rice University and the Uni-
versity of Sussex. They were named after architect Richard Buckminster
Fuller, who often used geodesic domes in his buildings. We can represent
fullerenes as graphs, treating carbon atoms as vertices and carbon bonds as
edges. In figure 2, for instance, is a planar graph representation of Buck-
minsterfullerene, C60, the first fullerene to be discovered.
In graph theory, fullerenes refer to any 3-regular, planar graphs comprised

strictly of pentagonal and hexagonal faces. The smallest such fullerene is
the dodecahedron graph, which is comprised of 20 vertices and 12 pentag-
onal faces. The number of fullerene isomers as a function of the number of
vertices, n, is asympotically O(n9).
There exist various algorithms that ennumerate and construct fullerene iso-
mer graphs. My research aim has been to implement an algorithm in Maple
that, given a specified number of vertices, will quickly generate a random
fullerene isomer. I will discuss some of the algorithms I considered. In
addition,

16

Figure 3: A spiral traversing all the faces of C60. The corresponding spiral
code is 56666656565656566565656565666665.

4.2 The spiral code algorithm

Manopolous and Fowler describe a means of encoding a fullerene. Their idea
is to pick a face from the fullerene graph, then another adjacent face, and
then to traverse the faces of the graph in an outward spiral. If there exists
a spiral traverses all the faces of the graph, we can encode the fullerene as
a sequence of numbers denoting the number of edges per face, in the order
that the spiral traverses them.
Not every fullerene has a spiral which touches every face of its graph; how-
ever, in practise most fullerene graphs have at least one spiral encoding. It
is difficult to find a fullerene graph that does not. An n-vertex fullerene has
as many as 6n unique spirals. We can uniquely determine a spiral by its first
and second faces, and then by the direction of the spiral, either clockwise
or counterclockwise. A pair of adjacent faces can be uniquely mapped to
their shared edge. For every such pair, we can generate a spiral starting
from either face, and turning in either direction. An n-vertex fullerene has
3n
2 edges, and hence 3n

2 adjacent face pairs, resulting in a maximum of 6n
spirals. Any fullerene which cannot be encoded by a spiral code would have
that every such spiral comes to a dead-end before traversing all the faces.
While spiral codes do not encode every possible fullerene isomer, they encode
virtually all fullerene isomers up to a relatively large number of vertices. One
way we could conceivably generate an n-vertex fullerene isomer in a partially
random fashion would be to test random spiral codes until we have one that

17

Figure 4: In the algorithm described by Plestenjak, Pisanski, and Graovac,
a prism is converted into a fullerene. Observe that the number of edges,
vertices, and faces is the same in both graphs.

encodes a fullerene. We can test if a spiral code in face does encode a
fullerene graph by effectively piecing the faces back together one at a time.
The outer face of our resulting planar graph should have as many edges as
the last digit of our spiral code specifies, if it is infact a fullerene graph.
This algorithm, albeit accessible, bodes problematic in two ways. First, we
already know it won’t generate some fullerene isomers. Secondly, given there
are O(n9) n-vertex fullerene isomers, each of which have at most 6n spiral
codes. Thus we have O(n10) potentially ”good” spiral codes; however, the
number of candidate spiral codes grows appreciably faster with respect to
n. Any sequence of 12 ’5’s and (n

2 − 10) ’6’s could conceivably encode an
n-vertex fullerene. We thus have

(n
2
+2
12

)
candidate spiral codes. Thus the

proportion of good spiral codes grows exponentially small as n increases. If
may be worthwhile to research means of quickly reducing our candidate set.

4.3 Constructing fullerenes from simpler graphs

Plestenjak, Pisanski, and Graovac describe an algorithm which takes an n-
vertex prism and transforms it into a fullerene graph. They transform the
polyhedron into a fullerene by way of the polyhedral Stone-Wales (PSW)
transformation (see figure 5). The advantage of this algorithm is that a prism
is very simple to construct. An n-vertex prism and an n-vertex fullerene both
have 3n

2 edges and n
2 + 2 faces. This holds constant for every intermediate

graph of the algorithm.
Observe in figure 5 that the faces f1 and f2 lose an edge whereas faces fa

and fb gain an edge from the transformation. By performing many PSW
transformations, we can change a prism into a fullerene; however, we cannot
just perform these transformations indiscriminantly. The questions remains

18

Figure 5: The polyhedral Stone-Wales (PSW) transformation on
edge {A,B}. The transformation is effectively two edge insertions
({A,B1}&{B,A2}) and two edge deletions ({A,A2}&{B,B2}).

as to which is the most appropriate edge to transform.
Plestenjak, Pisanski, and Graovac propose a selection rule. They first define
a constant f̄ and function E(G) on our graph G as follows:

f̄ = (3v)(· 1
n
2 + 2

)

E(G) =
[n

2
+2∑

i=1

(|fi − f̄ |)
]
−12(f̄ − 5)− (

n

2
+ 2)(6− f̄)

fi is simply the number of vertices (or equivalently, the number of edges) in
the face f . f̄ is simply the average number of edges per face in a polyhedron
graph with n vertices. E(G) has two useful properties:

1. E(G) ≥ 0,

2. E(G) = 0 ⇐⇒ G is a fullerene graph

So, our aim is to minimize E(G). We assign every edge e ∈ G a weight ω(e):

ω(e) = E(PSW (G, e))− E(G)

, where PSW (G, e) is the graph G after the PSW transformation has been
performed on edge e. The polyhedral Stone-Wales tranformation only affects
four faces (labelled f1, f2, fa, fb in figure 5) of our graph. We can reexpress
ω(e) as follows:

ω(e) = |fa + 1− f̄ |+ |fb + 1− f̄ |+ |f1 − 1− f̄ |+
|f2 − 1− f̄ | − |fa − f̄ | − |fb − f̄ | − |f1 − f̄ | − |f2 − f̄ |

19

Figure 6: The dual PSW transformation.

If there exists an edge e ∈ G for which ω(e) < 0, we simply pick an edge
with minimum weight in G at random. If all the edge weights are positive,
however, we pick a random subset of around 3 to 5 edges, and pick the edge
of minimal weight in that set. The reason for this is that there are instances
in which strictly choosing a minimum-weight edge at every step will cause
the algorithm to loop.
We can save time by performing all the transformation in the dual of our
polyhedron graph, and then constructing our fullerene from the dual upon
completion. We half the number of edge insertions and deletions by doing
so.
Each step of the algorithm takes O(n) operations. We need to do a find-min
operation to select an edge. Additionally, for every PSW transformation, we
need update every edge with a vertex on one of the four affected faces. The
average number of transformations needed to obtain a fullerene appears in
practise to be approximately O(n) as well, thereby resulting in a quadratic-
time algorithm.
One area for future study is the edge-selection rule. In practise, the func-
tion E(G) decreases very quickly at the start of the algorithm and then
approaches 0 very slowly as the algorithm progresses. We hope to shorten
the running-time of the algorithm by devising a quick means to determine
how to obtain a fullerene in a minimal number of steps, particularly when
we have a graph G for which E(G) is close to 0.

20

5 Planar Drawing

5.1 Introduction

In graph theory, we defined a planar graph to be a graph that can be drawn
so that no edges intersect in the plane. A planar graph already drawn in the
plane without edge intersections is called a plane graph. It would be nice
to include in Maple a graph drawing method to display every planar graph
in its plane graph form. A function as such has not yet been implemented
in Maple 11. One of our goals this month is to develop a intutive way of
planar drawing.

The planar drawing problem seems intuitive. However, it is also difficult in
the sense that one has to ensure the computer is smart enough to make a
decent drawing for every planar graph. In this project, we did not try to
use artificial intelligence to solve the problem instead we used graph theory
and some fundamental mathematics.

We can breakdown this problem into smaller ones. It’s fairly easy to de-
compose a general planar graph into its 3-connected subgraph components.
Thus, if one can first produce a good plane drawing for any 3-connected
planar graph, the problem is nearly solved. This is the essential problem
that Wendy has been working on for this part of the project. She began by
studying a method called RubberDraw which Mohammad has implemented
for drawing 3-connected planar graphs.

5.2 RubberDraw

RubberDraw takes in a graph of n vertices with the underlying constraint
that it is a 3-connected planar graph and returns a plane drawing of the
graph. The algorithm picks from all its faces the largest cycle with the most
number of vertices k to be the outer face. It positions the selected vertices
on a unit circle at the roots of unity. Now in order to determine the posi-
tions for the rest of the vertices of the graph, the algorithm places each of
the remaining vertices at the central of gravity of its neighbours. In this
way, the algorithm constructs a system of (n - k) linear equations in (n - k)
variables. The positions of the rest of the vertices are obtained by solving
the system of equations.

The outcome from calling the RubberDraw function on a 3-connected pla-
nar graph gives a plane drawing of the graph with no two edges intersecting.
However, the defect of this algorithm is obvious just by testing the function
against some planar graphs included in the SpecialGraphs package of Maple.
For example, when we draw the DodecahedronGraph using RubberDraw,

21

.

Figure 7: RubberDraw(S); S:=SoccerBallGraph();

the vertices inside the outer cycle are more concentrated towards the centre.
The drawing becomes even worse as the number of vertices of the graph in-
creases. Figure 7 shows the SoccerBallGraph with 60 vertices and we notice
that the inner vertices are all crowded towards the center. RubberDraw has
taken the first step in making plane drawings of general 3-connected planar
graphs. We now need to find ways to improve RubberDraw to address the
rescaling problem.

5.3 Experiments and Observations

There is one graph in particular of which the RubberDraw method returns a
good plane drawing. RubberDraw displays the GrinbergGraph nicely with
the inner verticesbegin spreadout evenly inside the outer cycle. In Figure 8
one would notice that outer cycle of the Grinberg graph is a enneagon and
has 9 edges connected to the vertices inside. These edges seem to pull more
of the inner vertices towards the outer cycle and thus avoided the cluster of
vertices at the center.

In general, if there are more edges connecting the outer vertices with the
inner ones of a graph, then RubberDraw may return a better plane drawing
of the graph. It’s clear that we want to improve our RubberDraw function so
that most of the resulting graphs would be displayed in the patterns of the
bottom row. Wendy implemented this idea into RubberDraw. The updated
RubberDraw again picks the largest cycle to be the outer face, it then adds
edges connecting each of the outer vertices to the nearby two inner vertices
as shown in Figure 9 [left]. The rest of the algorithm stays the same, except
at the end the additionally added edges are removed. The resulting Soccer-
Ball graph is shown on the right hand side of Figure 9.

This trial turns out well but we have to keep in mind that up to now only
the nice graphs in the SpecialGraphs Package are tested. We have not yet

22

Figure 8: RubberDraw(G); G:=GrinbergGraph();

Figure 9: SocceBallGraph redrawn using the updated RubberDraw

23

Figure 10: patterns of results from the original RubberDraw

tested our RubberDraw with more general 3-connected planar graphs. In
Maple 11, there is no method of generating random 3-connected graphs.
However, Alejandron has implemented an algorithm of generating random
planar triangulation graphs. In the previous experiment of trying to improve
RubberDraw on some graphs in the SpecialGraphs package, we succeeded
by triangulating parts of the graphs. It helps to examine how RubberDraw
behaves with a random planar triangulation. Mohammad and Wendy tested
the original RubberDraw function with 50 randomly generated planar trian-
gulations of 9 vertices. Most of the outcoming graphs fall into the following
4 patterns as shown in Figure 10.

We see that the first two graphs are badly drawn. There is again clustering
of the inner vertices in some areas of the graphs. Unfortunately out of the
50 graphs drawn, many outcoming graphs exhibit these two patterns. The
last two graphs are much better. However, notice that the third graph has
a lot of symmetry which is not the case with other general graphs. The best
we can do is to bring most of our graphs to the pattern of the very last one.

5.4 A improvement to RubberDraw

We studied the bad graphs and the good graphs by going through lists of
random planar triangulations generated in the experiment. Soon it’s clear
that in all the better drawn graphs, the vertices of the selected outer face
has similar degrees. Here the degree of a vertice means the number of neigh-
bours of the vertex. On the other hand, bad graphs such as the one at the
top left have inbalancies in the degrees of vertices of its outer face. However,
the graph at the top right does have good balancy in its degrees of vertices
on the outer cycle. The problem with this graph is that the outer vertices
have small degrees and thus some inner vertices with higher degrees are all
crowded in the center. Therefore, the goal is to pick the right outer face in
order to achieve balancy in the degrees of outer vertices while maximizing

24

Figure 11: the same four graphs redrawn by RubberDrawv

the sum of their degrees.

Simple math was used to solve the problem in this approach. Wendy revised
RubberDraw and named it RubberDrawv for now. In RubberDrawv, let F
be the list of faces of a graph G obtained from IsPlanar(G, ’F’). Each face
is represented by a list of vertices in the face. RubberDrawv goes through
F and gets the list of degree sequences of faces. In the following step,
it calculates the mean deviation and the sum of degrees for each degree
sequence. They are stored in lists ’mdev’ and ’dssum’ respectively. Now we
take the ratio

mdev[i] + NumberOfV ertices(G)
dssum[i]

where the i is the index to the faces of the graph. The ratios are stored in
a list called dv. The function then picks F[i] with the smallest ratio dv[i] to
be the outer cycle.

a list of degrees of vertices of graph G
ds := DegreeSequence(G);
the list of degree sequences for faces of G
dsof := [seq([seq(ds[x], x=i)], i=F)];
the mean deviation in each degree sequence
mdev := [seq(MeanDeviation(i), i=dsof)];
the sum of degrees of each degree sequence
dssum := [seq(add(x, x=i),i=dsof)];
the list which stores the ratios dv := [seq((mdev[i] + NumberOfVer-
tices(G))/dssum[i], i=1..nops(dssum))];

The rest of the function is the same as the original RubberDraw method.
Figure 11 shows the same four graphs redrawn by RubberDrawv.

25

Figure 12: the last experiment

5.5 Future Work

RubberDrawv has not eliminated all the rescaling problems. As we men-
tioned at the beginning, it’s hard to find a drawing method which can display
all planar graphs nicely in the way we would draw them by hand. For exam-
ple, GeneralizedPetersen graphs of many vertices have two big cycles. The
plane drawings of these graphs turn out to be rings. In the past month,
we have used some time to improve RubberDraw so that most of the plane
drawings would be displayed properly. However, there is still rooms for fur-
ther improvements. A suggestion from Mohammad is that we can replace
the straight edges with arcs therefore allowing more room for positioning the
inner vertices. Since there is no arc implementation at the moment, the last
experiment being done in the project is adding vertices to the outer edges
of a planar triangulation. This would cause the outer cycle to become an
enneagon resembling the arcs between the 3 vertices. We observe that this
has allowed more room for drawing the graph as shown in Figure 12.

26

6 Bibliography

• ”New Methods to Color the Vertices of a Graph”, Daniel Br’elaz,
’Ecole Polytechnique F’ed’erale de Lausanne.

• ”Enumeration of cospectral graphs”, W.H. Haemers and E. Spence,
European J. Combinatorics.

• P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Claren-
don,Oxford, 1995.

• T. Pisanski, B. Plestenjak, and A. Graovac. Generating Fullerenes at
Random. J. Chem. Inf. Comp. Sci., 36:825–828, 1996.

• G. Brinkmann and , A.W.M Dress. A Constructive Enumeration of
Fullerenes. J. Algorithms, 23:345 - 358, 1997.

27

